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Dynamics of a Ring of Diffusively Coupled Lorenz
Oscillators
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We study the dynamics of a finite chain of diffusively coupled Lorenz oscillators
with periodic boundary conditions. Such rings possess infinitely many fixed
states, some of which are observed to be stable. It is shown that there exists a
stable fixed state in arbitrarily large rings for a fixed coupling strength. This
suggests that coherent behavior in networks of diffusively coupled systems may
appear at a coupling strength that is independent of the size of the network.

KEY WORDS: Chains of chaotic oscillators; chaotic synchronization; fixed
states in lattices.

1. INTRODUCTION

Lattices of coupled dynamical systems have been studied in many different
contexts: as discrete versions of partial differential equations of evolution
type, (10, 22) models of neuronal networks(6, 18) and phase lock loops, (4) and
in statistical mechanics.(14) The particular problem of synchronization and
emergence of coherent behavior in lattices of diffusively coupled, chaotic,
continuous time dynamical systems has received much attention recently due
to its applications in neuroscience, (1, 18) and chaotic synchronization. (19, 16)

Analytical results in the literature suggest that the coupling strength
necessary for the appearance of coherent behavior in networks of chaotic
systems grow with the size of the network.(5, 4, 15) For instance estimates of
Afraimovich and Lin(5) suggest that the coupling strength necessary to
synchronize a lattice of generalized forced Duffing systems grows as a high
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power of the size of the lattice. Since stable, coherent states in lattices may
frequently be viewed as instances of generalized synchronization, (19) one
might guess that the appearance of dynamically stable states of this type
also requires that the coupling grows with the number of oscillators in the
system. This would make it unlikely that such networks are of importance
in nature, since the coupling strength in realistic systems cannot be varied
by orders of magnitude.

In contrast to these theoretical results, the numerical experiments of
Huerta, et al.(18) indicate that partial synchronization may appear in cer-
tain networks of chaotic systems at a nearly constant coupling strength,
regardless of the size of the network. In particular, ref. 18 considered a
system with about 104 coupled neurons. Each neuron was modeled by a
system of three nonlinear, ordinary differential equations which, when
uncoupled, underwent chaotic motion They observed a variety of different
stable, coherent motions including a number of states that exhibited
roughly periodic patterns. It is the goal of this paper to show rigorously
that such such stable, coherent states can occur in arbitrarily large systems
of coupled chaotic oscillators at a coupling strength which is independent
of the size of the system.

Since the Lorenz system is one of the paradigms of chaotic flows, we
have chosen a ring of diffusively coupled Lorenz equations for our
investigations. The systems in the ring evolve according to the equations

x$i=_( yi&xi )+dx 2xi

y$i=rxi& yi&xi zi+dy 2yi (1)

z$i=&;zi+x i yi+dz 2zi

where 2xi=xi&1&2xi+x i+1 with the index i taken modulo n is the dis-
cretized Laplacian with periodic boundary conditions. The constants
_=10, r=27, and ;=8�3 are chosen so that each uncoupled system would
be in the chaotic regime. Following the work of ref. 18, we will focus on
the, case dx{0, dy=dz=0. As shown in ref. 19, such a ring is synchronized
identically for sufficiently large values of dx . We will be concerned with the
case when dx is sufficiently large for coherent spatial structures to emerge
in the chain, but insufficient to synchronize the ring.

The paper is organized as follows: Typical spatial structures observed
in numerical experiments are described in Section 2. In particular, we give
examples of stable stationary states, traveling waves, and breathers. In
Section 3 a general framework for the study of fixed states in chains and
rings of dynamical systems is discussed. We show that the existence of
such states can be reduced to the study of periodic solutions of reversible
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dynamical systems on Rn. We then apply these results to two different
cases, including the chains of coupled Lorenz oscillators (1), to show that
a large number of fixed states can be expected in such rings. The conditions
under which these states are stable are investigated in Section 5; we then
show how Floquet theory can be used to reduce the stability question in
lattices of arbitrarily many oscillators to the study of the spectrum of a
matrix of fixed size (but depending on a parameter��the ``quasi-momen-
tum.'') Finally, in Section 6 we implement this program to rigorously
construct an example of a spatially periodic stable fixed state which
remains stable for rings of arbitrary size.

2. NUMERICAL EXPERIMENTS

Numerical experiments were performed on a Sun SuperSparc using the
numerical integration program XPP. Several different integration methods
were used to check the validity of the results. These included fixed and
variable step Runge�Kutta methods of varying order and the Gear method.

At very low values of the coupling constant dx , the individual systems
in the ring behaved as if they were uncoupled. As the coupling strength was
increased the behavior of the ring became more coherent. Since the discrete
Laplacian acts to synchronize neighboring systems in the ring, these results
agree with our expectations. As was emphasized in the introduction, the
onset of the coherent behavior occurred at coupling strengths which
seemed to be independent of the number of oscillators in the ring. Some of
the typical structures observed in these numerical experiments are discussed
below.

2.1. Breathers

If some of the systems in the ring are nearly stationary, while others
are undergoing oscillations we say that the oscillating systems form a
breather. Since we are considering rings of finite size, it is not expected that
any single system in the ring is stationary, unless the entire ring is stationary.

An example of a system with two breathers is shown in Fig. 1. It is
interesting to note that in these states each of the individual systems under-
goes oscillations that are nearly periodic, and that there is a strong spatial
dependence on the motion. Loosely speaking the motion of each individual
system is trapped in a region close to one of the ``lobes'' of the Lorenz
attractor. No stable states in which all systems in the ring are trapped in
the vicinity of only one ``lobe'' has been observed. Similar breathers have
been studied in coupled map lattices in ref. 8, while occurrences of nearly
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Fig. 1. A stable state of two breathers in a ring of 16 Lorenz systems coupled through the
x variable at dx=15. The first series of figures shows a snapshot of the x variables of the
different systems at different points of one oscillation. In these figures, the position of the
oscillator in the ring is given on the x-axis, while xi (t) is given on the y-axis. The timeseries
of x1(t) and x5(t), which are nearly periodic, are given below.

periodic behavior with pronounced spatial patterns in lattices of chaotically
bursting neurons have been observed numerically by M. I. Rabinovich, et
al.(23)

Another interesting feature of breathers, which is also shared with
other types of solutions of this network, is that frequently nonadjacent
systems synchronize without synchronizing with the oscillators that lie
between them. The synchrony is usually not exact, however this may be
due to numerical errors in the calculations. Due to the many symmetries of
the system this sometimes seems to be due to the stability of an invariant
manifold corresponding to a partially synchronized state in the chain as
discussed.(19) In other cases the state does not appear to be symmetric, and
it is unclear what the mechanism behind this synchronization is.

It is important to note that some of the qualitative features of the
dynamics remain unaffected by the size, or the coupling strength in the
ring. Figure 2 shows typical timeseries of the x variable at four different
coupling values in a ring of 32 oscillators. Note the smooth envelope and
regularity of the oscillations, as well as the agreement of the timescales
among the different timeseries. These general features remain unchanged as
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Fig. 2. Typical timeseries of x15(t) at coupling strengths dx=5, 15, 20, 25 from top to
bottom. Many features of the system remain similar at different coupling values. The oscilla-
tions have a smooth envelope, a feature that is typical to solutions for coupling strengths at
which the network behaves coherently, but is not synchronized exactly. Even the transients
that precede a stable fixed state have similar shapes.

the number of systems in the ring is varied, as long as the coupling is below
the synchronization threshold and above the value necessary for the
appearance of coherent behavior.

2.2. Stable Stationary States

In numerical experiments with rings of 8 to 52 systems stable steady
states were observed for a variety of initial conditions for dx>10. Typical
stable fixed states are shown in Fig. 3.

For certain values of the coupling it appears that all initial conditions
lead to one of the stationary states of the system The basins of attraction
of the stationary states seem to be intertwined in a complicated way in this
case, as shown in Fig. 3. The same is true for other stable states of the
system. Small changes in the initial values of the parameters, and changes
in the integrating methods can result in very different asymptotic behavior
of the system. This situation is similar to that of attractors with riddled
basins of attraction, (7) and was also observed in numerical simulations of
networks of chaotically bursting neurons.(18)
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Fig. 3. The system is very sensitive to initial conditions. The eventual stable state in a chain
of 32 oscillators with dx=40 is shown. Only one initial condition x0(0) is different for each
figure��it was incremented by 0.01. Very different states are reached. This suggests that the
basins of attraction are intertwined in a complicated way. The stable states in these figures are
typical, although fixed states with one ``hump'' are more common than states with more
``humps.''

2.3. Traveling Pulses

Traveling pulses were observed in the ring only when dx{0 and
dy{0. A typical traveling pulse is shown in Fig. 4. The pulse oscillates as
it propagates along the chain, and is thus a periodic, rather than a fixed
state in a moving coordinate frame. This can be seen in the timeseries in
Fig. 4.

Fig. 4. The wave when dx=dy=6. This seems to be a globally stable solution of the
equations.
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3. A GENERAL FRAMEWORK FOR THE STUDY OF STEADY
STATES

System (1) is a special case of a lattice discrete or continuous time
dynamical system

(uj )$=F([uj ]s ) (2)

where j # ZD, uj # R\ and [uj ]s=[ui : |i& j |�s]. In the following discus-
sion we will use the convention that in uk

i the subscript i # ZD denotes the
position in the lattice, while the superscript 1�k� p denotes the com-
ponent of the vector ui . Such systems have been studied by many
authors(2, 10, 22) as discrete versions of partial differential equations of evolu-
tion type.

We will mainly be concerned with systems continuous in time with
D=1 and s=1. These are simply chains of systems coupled to their nearest
neighbors. The special case of rings, that is chains of finite size with peri-
odic boundary condition will be the focus of our attention. A state in a ring
of n systems corresponds to a state of period n in the spatial variable in an
infinite chain.

A steady state of a chain given in (2) is determined by

F([uj ]s )=F(u j&1 , uj , uj+1)=0 (3)

F([uj ]s )=F(u j&1 , uj , uj+1)=uj (4)

in the continuous, respectively discrete case. We will study systems that
satisfy the following condition:

Condition 1. If we write F: R3p � R\ as F(/, ', `)=(F 1(/, ', `),
F 2(/, ', `),..., F p(/, ', `)) then det[(�F i��` j )(/, ', `)]i, j{0.

By the Implicit Function Theorem in the case of continuous time if
det[(�F i��` j )(/, ', `)] i, j{0 for all values of /, ', ` then either there exists
a point (a, b, c) # R3p such that F(a, b, c)=0 and therefore a function
G(', /) such that F(/, ', G(', /))=0, or F(/, ', `)=0 has no solutions and
there are no fixed points of (2). If such a function G exists and we define
uj+1=G(uj , uj&1), x j=u j and yj=uj&1 this leads to the following dynami-
cal system on R2p:

xj+1=G(x j , yj ) y j+1=x j (5)
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The steady states of (2) are given by the x-coordinates of the orbits of (5).
In general, the function G may not be unique, in which case more than one
system of the form (5) is needed to determine all the fixed points of the
chain. An equivalent argument holds in the case of discrete time.

Since the function G can assume any form, not much can be said
about such systems in general. The subclass of chains of systems with the
following type of coupling is easier to analyze.

Definition 3.1. A nearest neighbor coupling of a chain of systems
is said to be symmetric if F(uj&1 , uj , uj+1)=F(u j+1 , uj , uj&1).

This simply means that a system in the chain is coupled to its left and
right neighbor in the same way. For instance the couplings 2uj=uj&1&
2uj+uj+1 and 9uj=u j&1u j+1+uj are of this type. The stationary states of
symmetrically coupled chains are related to the following class of dynamical
systems:

Definition 3.2. Given a diffeomorphism 8: R2p � R2p and an
involution R: R2p � R2p such that the dimension of the fined point set of R
is p we say that 8 is R-reversible if

R b 8=8&1 b R (6)

The dynamical system defined by xi+1=8(x i ) is also said to be R-reversible.

The relation between symmetrically coupled chains and reversible
systems is given in the following

Theorem 3.3. The fixed states of a symmetrically coupled chain of
systems satisfying condition 1 correspond to the orbits of a dynamical
system of the form (5) which is R-reversible and volume preserving. For
such a system R(x, y)=( y, x), with x, y # R p.

Proof. The arguments for the continuous and discrete case are vir-
tually identical, so only the first will be considered. Equation (3) together
with the assumption that the coupling is symmetric implies that

F(uj&1 , uj , uj+1)=F(uj+1 , uj , uj&1)=0 (7)

Therefore this leads to the recursion equations

uj+1=G(uj , uj&1) uj&1=G(uj , uj+1) (8)
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Fig. 5. The action of the two systems in Eq. (9).

and the two dynamical systems

xj+1=G(xj , yj ) zj&1=G(zj , wj )
(9)

yj+1=xj wj&1=zj

where xj=zj=uj , yj=uj&1 and wj=uj+1. The action of these systems is
shown schematically in Fig. 5.

Let R(x, y)=( y, x) and 8(x, y)=(G(x, y), x) so that the dynamical
systems in (9) is generated by 8. By the definition of this diffeomorphism

R b 8 b R b 8(xi , yi )=R b 8( yi+1, xi+1)=R b 8(zi , wi )

=R(zi&1 , wi&1)=R( yi , xi )=(xi , yi ) (10)

Since R is an involution with Fix(R)=[(x, y): x= y] the diffeomorphism
8 and the dynamical system it induces on the plane are R-reversible.

To prove that the map 8 is volume preserving notice that

D8=_D1 G
I

D2G
0 & (11)

By the definition of the function G we know that F(/, ', G(', /))=0 so
that differentiating with respect to / leads to

D1 F+D3 FD2G=0 (12)
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D3 F is an invertible matrix by Condition 1, so that D2 G=&D1F(D3F )&1.
By assumption the system is symmetric so that D1F=D3F at all points in
R3p and hence D2G=&I. Since

_ 0
&I

I
0&_

D1 G
I

&I
0 &=_ I

&D1 G
0
I & (13)

and

det _ 0
&I

I
0&=det _ I

&D1 G
0
I &=1 (14)

it follows that det D8=1 and the diffeomorphism 8 is volume preserving.
K

R-reversible systems have many properties that facilitate their study.
We will make use of several of these summarized in the following proposi-
tion adopted from ref. 12

Proposition 3.4. Let R and 8 be as in Definition (3.2).

(a) If p # Fix(R) and 8k( p) # Fix(R), then 82k( p)= p. Such periodic
points will be referred to as symmetric periodic points.

(b) Let p # Fix(R) be a fixed point of 8, then R(W u( p))=W s( p)
and R(W s( p))=W u( p) so that if q # W u( p) & Fix(R) then q is a homo-
clinic point.

(c) If p # Fix(R) is a fixed point of 8 such that W u( p) intersects
Fix(R) transversally at a point q, then there exist infinitely many symmetric
periodic points in any neighborhood of p.

4. STEADY STATES IN THE CASE OF DISCRETE LAPLACIAN
COUPLING

For a chain of systems of the form u$= f (u) coupled through a dis-
crete Laplacian 2uj=(uj&1&2uj+uj+1) the equation (2) takes the form

(uj )$= f (uj )+d(uj&1&2uj+uj+1) (15)

and the dynamical system (5) takes the form

xi+1=&
1
d

f (xi )& yi+\2+
c
d + xi

(16)
yi+1=xi

10 Josic� and Wayne



where c=0 in the case of continuous time and c=1 in the case of discrete
time. The following proposition follows immediately from these definitions

Proposition 4.1. The fixed points of (16) are of the form
xi= yi=u0 where u0 is any solution of the equation f (u)=0 in the con-
tinuous time and f (u)=u in the discrete time case. Thus all fixed points of
(16) lie on Fix(R)=[(x, y): x= y] and are in 1-1 correspondence with the
steady states of an uncoupled system in the chain.

The fixed points of (5) correspond to states of the chain that are con-
stant in space and time and Proposition 4.1 shows that the only such states
[uj ] j # Z in the case of a discrete Laplacian coupling are given by uj=u0 for
all j # Z where u0 is a fixed point of an uncoupled system of the chain
u$= f (u). Since the fixed points of (16) are (u0 , u0) # Fix(R) this allows us
to make use of Proposition 3.4.3

Moreover we can apply Theorem 3.3 directly in this case to conclude
that the map defining the fixed points is R-reversible and volume preserving.

Remark. It is interesting to note that if the fixed states of a chain of
one dimensional systems are determined by a dynamical system of the form
(16) on R2 and (x0 , y0) is a fixed point of (16) then the discriminant of the
characteristic polynomial of D8(x0 , y0) is

�\&
1
d

f $(x0)+2+c�d+
2

&4 (17)

Since det D8(x0 , y0)=1 we can conclude the following:

(a) In the case of discrete time the eigenvalues of D8(x0 , y0) are on
the unit circle when f $(x0)>1 and d>( f $(x0)&1)�4) or f $(x0)<1 and
d<( f $(x0)&1)�4).

(b) In the case of continuous time, the eigenvalues of D8(x0 , y0) are
on the unit circle for sufficiently large positive d when f $(x0)>0 and for
sufficiently large negative d when f $(x0)<0.

By a theorem of Birkhoff (see for example ref. 20) since 8 is area preserv-
ing, the dynamical system (16),will generically have infinitely many peri-
odic orbits in any neighborhood of (x0 , y0). Any such periodic orbit will
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correspond to a fixed state of (15) which is periodic in space, i.e., in the
variable j.

The condition det D8(x0 , y0)=1 is not sufficient to guarantee that
D8(x0 , y0) will have eigenvalues on the unit circle if (16) is not a dynami-
cal system on the plane. Additional information needs to be considered to
conclude the existence of such periodic orbits in this case.

Example 1. Consider a chain of tent maps coupled through a dis-
crete Laplacian described by the equation u$j= f (u j )+2uj with

f (uj )={2u j

&2uj+2
if u j<1�2
if uj�1�2

(18)

This is a discrete dynamical system with fixed states determined by a
homeomorphism of the plane given in (16) with c=1.

The only fixed points of (16) are (0, 0) and (2�3, 2�3) by Proposi-
tion 4.1. Since in this case the dynamical system (16) is linear in each of the
two halves of the plane x<1�2 and x�1�2 the analysis of the dynamics
around the fixed points is straightforward. A direct calculation shows that
in the region x<1�2 there is a family of invariant ellipses whose major axis
lies on the diagonal D=[(x, y) # R2 : x= y] and on which the action of
(16) is a rotation. As d is increased, these ellipses become more eccentric.

The fixed states of the chain corresponding to these orbits are not
dynamically stable. If û=[ûj ] j # Z is a fixed state in the chain such that
ûj<1�2 for all j then around this state the dynamics of the chain are
described by:

u$j=2uj+d2uj (19)

The spectrum of the operator 2+d2 is the interval [2&4d, 2] and so û
cannot be stable, and would not be observed in numerical experiments.

Besides these invariant ellipses, this system will also typically have
infinitely many periodic orbits, and will exhibit complicated behavior, as
the following argument shows. A simple calculation shows that the point
p=(2�3, 2�3) is hyperbolic for all values d>0. Since the dynamics is
piecewise linear the stable and unstable manifold can be calculated
explicitly. W u( p) will consist of a ray contained in the half plane x>1�2
and a second more complicated part which is constructed as follows. The
first section of W u( p) is a line A, as shown in Fig. 6. The part of A con-
tained in the half plane x<1�2 is rotated along the invariant ellipses
around the origin to the line A$ under forward iteration. The subsequent
images of A$ are lines that are rotated further. Therefore f n0(A$) intersects
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Fig. 6. The invariant circles around (0, 0) give way to complicated behavior close to
(1�2, 1�2) due to the transversal intersection of W u(2�3, 2�3) and W s(2�3, 2�3).

the diagonal D for some n0 . Whenever the angle of this intersection is not
a right angle W u( p) will intersect W s( p) transversely since by Proposi-
tion 3.4(b) the stable manifold is the reflection of the unstable manifold
through the diagonal W u( p). This shows that complicated dynamics of
(16) can be expected and implies the existence of infinitely many periodic
as well as spatially chaotic states in the chain of tent maps.

Example 2. Next we consider the chain of diffusively coupled
Lorenz system (1) with dy=dz=0. This system does not satisfy Condi-
tion 1, however after setting the right-hand side of Eqs. (1) to 0 and using
the second and third equation in (1) to eliminate the variables yi and zi the
following equation for a fixed state is obtained

_ \x̂i&
;rx̂i

;+(x̂i )
2+&d(x̂i&1&2x̂i+x̂i+1)=0 (20)

ŷi=
;rx̂i

;+(x̂i )
2 (21)

ẑi=
r(x̂i )

2

;+(x̂i )
2 (22)

13Dynamics of a Ring of Diffusively Coupled Lorenz Oscillators



The function on the left hand side of Eq. (20) satisfies Condition 1, and we
can proceed as in the previous example.

Equation (20) defines the following dynamical system on the plane

_xi+1

y i+1&=F \_xi

yi&+=_(_�d )[xi&(;rxi �(;+(xi )
2)]+2x i& yi

xi & (23)

Orbits of period n of this system are in 1�1 correspondence with the steady
states in the ring of n Lorenz systems. The two fixed points of (23) are
(0, 0) and (\- ;(r&1), \- ;(r&1))=(\8.326� , \8.326� ) which both lie
on lie on Fix(R).

The following definition from ref. 12 will be used in the remainder of
the argument.

Definition 4.2. A compact region H in the plane is called over-
flowing in the y-direction for a function F if the image of any point
(x0 , y0) # int(H ) lies strictly above the line y= y0 .

Notice that any point in the interior of H either leaves H or is
asymptotic to a periodic point on the boundary of H.

Theorem 4.3. The map (23) has a homoclinic point and infinitely
many periodic points for all 0<d�20.

Proof. Let p denote the fixed point (&- ;(r&1), &- ;(r&1)) of (23),
G the ray y=&- ;(r&1) with x>&- ;(r&1), and D=[(x, y) : x= y]
the diagonal in R2. The image of the triangular region W bounded by D
and G lies between the two cubics

F(D)={(x, y): x=
_
d \ y&

;ry
;+ y2++ y= (24)

F(G)={(x, y): x=
_
d \ y&

;ry
;+ y2++2y+- ;(r&1)= (25)

Consider the region F(W ) & W=H depicted in Fig. 7. Let (x0 , y0) # int(H )
and consider the vertical line segment l passing through (x0 , y0) and con-
necting G and D. The image of l is a horizontal line segment connecting
F(G) and F(D) contained in the line y=x0 . Any point of this line segment
lies above the line y= y0 . Therefore H is overflowing in the y direction.
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Fig. 7. The region H is bounded by the two cubics F(D) and F(G) and D. The figure on the
left W corresponds to the case d=20. For d>20+= these curves do not bound a compact
region.

Since int(F(H)&int(H )) and int(H ) lie on opposite sides of D, any
point in H must have an iterate which either lies on D or crosses D.
A direct calculation shows that one branch of W u( p) enters H. Since H is
overflowing in the y direction, W u( p) must either cross D or be asymptotic
to the fixed point (0, 0) creating a saddle-saddle connection. The second
possibility can be excluded as follows:

The eigenvector of the linearization of F around (0, 0) corresponding
to the stable direction is v1=(1, &d�(d&130+2 - 652&d )). The vector
v2=(1, (d&260)�d ) is tangent to F(D) at (0, 0). A direct computation
shows that for 0<d<20 the vector v1 points to the left of v2 and so the
tangent to W s(0, 0) at (0, 0) does not point into H. This situation is
depicted schematically in Fig. 8 and excludes the possibility that W u( p) is
asymptotic to (0, 0).

Fig. 8. If W u( p) coincides with the stable manifold of the origin then v1 must be tangent to
W u( p) at the origin. Since v1 points outside of H this is impossible.

15Dynamics of a Ring of Diffusively Coupled Lorenz Oscillators



File: 822J 243916 . By:XX . Date:30:11:99 . Time:10:16 LOP8M. V8.B. Page 01:01
Codes: 2300 Signs: 1783 . Length: 44 pic 2 pts, 186 mm

Fig. 9. A numerical approximation of the manifold W u( p) is shown on the right. The com-
plex structure of the manifold suggests complicated behavior on some invariant set of points.

By Proposition 3.4(b) the fact that W u( p) meets D implies the exist-
ence of a homoclinic point.

By Proposition 3.4(c) in the case of R-reversible systems an infinite
number of periodic points exists whenever W u( p) crosses D transversely at
a homoclinic point. If this point of intersection is not transverse then a
transverse intersection of W u( p) and D can be produced nearby by an
argument given in [ref. 12, p. 261]. K

Numerical investigations suggest that the theorem remains true for
arbitrarily large values of d.

This theorem shows that rings of Lorenz systems coupled through the
first variable can be expected to have many periodic stationary states.
Numerical computations of W u( p) suggest that even more complicated
stationary states can be expected (see Fig. 9). However it is unclear whether
any of them are stable. Numerical investigations show that not only are
they stable, but their basins of attraction occupy a large portion of phase
space. We next address the problem of stability of these fixed states.

5. STABILITY OF STEADY STATES IN A RING

The study of stable fixed states in a chain of oscillators is not new.
They are described in refs. 13 and 6 as instances of oscillator death in a
chain of neural oscillators, in ref. 4 as synchronous states of phase lock
loops, and conditions for the stability of complex stationary states in
general lattices are given in ref. 3. The situation presented here is different
in that an explicit periodic stationary state is analyzed in a case where the
methods from the theory of parabolic partial differential equations used in

16 Josic� and Wayne



ref. 13 are not applicable, and the conditions proposed in ref. 3 cannot be
verified. In addition, since the coupling strength is neither very large nor
very small, there is no obvious perturbative approach to the problem.

Even if some of the fixed states in a ring of n systems are stable it can
not be concluded that stable equilibria exist in arbitrarily long rings of such
systems. If a stable fixed state is viewed as a special case of synchroniza-
tion, one might guess from results in Afraimovich and Lin(5) that the
coupling necessary to have stable steady states in longer rings increases as
a power of the size of the ring. It has already been argued that this is not
realistic from a physical viewpoint, and we will show below that it is not
the case.

In the following sections we will concentrate on the specific example of
a ring of Lorenz systems coupled in the x variable discussed in Example 2
of the last section. However the ideas presented can be applied to any chain
of symmetrically coupled systems for which Condition 1 holds.

The linearization of each of the Lorenz equations around a point
v̂i=(x̂i , ŷ i , ẑi ) when d=0 is

&_ _ 0

D v̂i
f =_r&ẑi &1 &x̂ i& (26)

ŷi x̂i &b

and hence linearizing the entire ring around the steady state v̂=(v̂i )
n
i=1=

(x̂1 , ŷ1 , ẑ1 ,..., x̂n , ŷn , ẑn) leads to the 3n_3n matrix

Dv̂F=_
Dv̂1

f &21
1
} } }
1

1
D v̂2

f &21
} } }
0

0
1
} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
1

1
0

} } }
D v̂n

f &21 & (27)

where the matrix 1 is defined as:

d 0 0

1=_0 0 0& (28)

0 0 0

It is in general not possible to compute the eigenvalues of this matrix
analytically. As mentioned above, we are specifically interested in coherent
states in networks with arbitrarily many oscillators. Given a periodic
stationary state in a chain of n oscillators, an easy way to obtain a periodic
stationary state in arbitrarily long chains is to repeat this state. In par-
ticular, if v̂ is a fixed state in a ring of n oscillators then repeating these
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Fig. 10. The fixed state that will be used as an example, and its 4-multiple.

values K times to obtain v̂(K )=[v̂, v̂,..., v̂] produces a steady state in a
chain of Kn oscillators. We refer to such a state as the K-multiple of the
steady state v̂. An example of a stationary state and its 4-multiple is given
in Fig. 10. We next derive conditions under which all K-multiples of a
stable steady state are themselves stable and demonstrate that these condi-
tions hold in a particular case.

The linearization around the steady state v̂(K ) leads to the following
stability matrix:

Dv̂ (K ) F=_
M
Eu

} } }
Ed

Ed

M
} } }
0

0
Ed

} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
Eu

Eu

0
} } }
M &

where

M=_
D v̂1

f &21
1
} } }
0

1
D v̂2

f &21
} } }
0

0
1
} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
1

0
0

} } }
D v̂n

f &21 &
and E is an 3n_3n matrix of the form

0 } } } 1 0 } } } 0

Eu=_ } } } } } } } } } & Ed =_ } } } } } } } } } &0 } } } 0 1 } } } 0

In general it is impossible to compute the spectrum of this 3Kn_3Kn
matrix. However in the preset instance Bloch wave theory, provides a way
of expressing the eigenfunctions of a larger system with a periodic depen-
dency as the eigenfunctions of a smaller system. As usual, this reduction is
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accompanied by the introduction of an additional parameter into the equa-
tions. Here the Bloch wave approach will be used to reduce the problem
of computing the eigenvalues of the 3Kn_3Kn matrix D v̂ (K ) F for arbitrary
K to the computation of the eigenvalues of an 3n_3n matrix dependent on
a parameter t.

Let e=(9( j), 8( j), '( j))Kn
j=1=(9(1), 8(1), '(1),..., 9(Kn), 8(Kn),

'(Kn)) where

9( j)=exp \2?iq
nK

j + 9� q( j)

8( j)=exp \2?iq
nK

j + 8� q( j) (29)

'( j)=exp \2?iq
nK

j + '~ q( j)

for 1�q�Kn and 9� q , 8� q , '~ q are assumed to be n-periodic. We will show
that the vector e is an eigenvector of D v̂ (K ) whenever the vector

i=(9� ( j), 8� ( j), '~ ( j))n
j=1 (30)

is an eigenvector of a particular 3n_3n matrix derived from Dv̂ (K ) F.
A direct calculation leads to:

[Dv̂ (K ) F ] e(3j)=e(2?iq�nK ) j (de2?iq�nK9� q( j+1 mod n)

+de&2?iq�nK9� q( j&1 mod n)&29� q( j)

+v1( j) 9� q( j)+w1( j) 8� q( j)+u1( j) '~ q( j)) (31)

[D v̂ (K )F ] e(3j+1)=e(2?iq�nK ) j (v2( j) 9� q( j)+w2( j) 8� q( j)+u2( j) '~ q( j))

[D v̂ (K )F ] e(3j+2)=e(2?iq�nK ) j (v3( j) 9� q( j)+w3( j) 8� q( j)+u3( j) '~ q( j))

for 1� j�Kn. Here vi ( j), wi ( j), ui ( j) are given by Eq. (26) as

v1( j) w1( j) u1( j) &_ _ 0

_v2( j) w2( j) u2( j)&=_r&ẑj mod n &1 &x̂j mod n&v3( j) w3( j) u3( j) ŷj mod n x̂j mod n &b

and are thus n-periodic.
We want to check when e is an eigenvector of D v̂ (K ) F and so we set

Dv̂ (K ) Fe=*e. Using the expressions obtained in (31) we get
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exp \2?iq
nK

j+ (de2?iq�nK9� q( j+1 mod n)+de&2?iq�nK9� q( j&1 mod n)

&29� q( j)+v1( j) 9� q( j)+w1( j) 8� q( j)+u1( j) '~ q( j),

v2( j) 9� q( j)+w2( j) 8� q( j)+u2( j) '~ q( j),

v3( j) 9� q( j)+w3( j) 8� q( j)+u3( j) '~ q( j))Kn
j=1

=* exp \2?iq
nK

j+ (9� q( j), 8� q( j), '~ q( j))Kn
j=1 (32)

Since all the functions on the right hand side of (32) are n-periodic we
can express Eq. (32) as D(q) i=*i where i is defined in Eq. (30) and

D(q)=_
D v̂1

f &21
E(q)&

} } }
E(q)+

E(q)+

D v̂2
f &21
} } }
0

0
E(q)+

} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
E(q)&

E(q)&

0
} } }

D v̂n
f &21 &

(33)

with the matrices E(q)\ defined as:

de\2?iq�nK 0 0

E(q)\=_ 0 0 0& (34)

0 0 0

This implies that the eigenvalues of D v̂ (K ) F are the same as the eigenvalues
of the 3n_3n matrices D(q) for 1�q�Kn. The 3n_3n matrix D(q) is
easier to handle than the 3Kn_3Kn matrix Dv̂ (K ) F.

To conclude that any K-multiple of a stable fixed state v0 of a ring of
n oscillator is stable it is sufficient to show that the eigenvalues of the
matrix D(q) have negative real part for all values of q and K. To simplify
the calculations we can replace the argument q # Z by a continuous
parameter t # R by replacing the matrices E(q)\ with the matrices

de\it 0 0

E \
t =_ 0 0 0&0 0 0

in the expression for D. If we can show that D(t) has eigenvalues with
negative real part for all t # R then the same is true for D(q) for any values
of K and q in Z.
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The following lemma about the class of matrices of type (33) will be
used in the next section.

Lemma 5.1. Let E(t)\ be as in the previous lemma. The charac-
teristic polynomial of a Km_Km matrix

M1 E(t)+ 0 } } } 0 0 E(t)&

E(t)& M2 E(t)+ } } } 0 0 0

B=_ } } } } } } } } } } } } } } } } } } } } } &0 0 0 } } } E(t)& MK&1 E(t)+

E(t)+ 0 0 } } } 0 E(t)& MK

is of the form

pM(t, *)= :
(K&1) m

i=0

(: i+;i cos Kt) *i+ :
Km

i=(K&1) m+1

:i *i (35)

A proof of this lemma is given in the appendix.

6. AN EXAMPLE

This section gives a computer assisted proof that any K-multiple of a
particular stable fixed state in a ring of four Lorenz system is stable. The
proof involves the use of interval arithmetic and the following theorems
about the convergence of the Newton�Raphson�Kantorovich method. The
computations were performed using Mathematica's implementation of
interval arithmetic.

Theorem 6.1. Let f (z) be a complex analytic function and assume
f (z0) f $(z0){0 for some z0 . Define h0=&f (z0)�f $(z0), the disc K0=
[z : |z&z0 |�|h0 |] and M=maxK0

| f "(z)|. If 2 |h0 | M�| f $(z0)| then there
is exactly one root of f in the closed disc K0 .

Theorem 6.2 (Kantorovich's Convergence Theorem). Given a
twice differentiable function f : Rn � Rn which is nonsingular at a point
x0=(x0

1 , x0
2 ,..., x0

n) let [1ik]=[(�fi ��xk)(x0)]&1. Let A, B, C be positive
real numbers such that

max
i

:
n

k=1

|1ik |�A max
i

:
n

k=1

|1 ik fk(x0)|�B C�
1

2AB
(36)
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Define the region R=[x # Rn : maxi |x i&x0
i |�(AC )&1 (1&- 1&2ABC )].

If

max
x # R

:
n

j=1

:
n

k=1
} �2fi

�xj �xk }�C i=1,..., n (37)

then the equation f (x)=0 has a solution in R.
The argument will proceed as follows: First a steady state of the ring

is found using interval arithmetic. Next it is shown that the characteristic
polynomial pD (*, t) of the matrix D(q) in (33) corresponding to this steady
state has roots with negative real part for t=?�4. Finally it is proved that
pD (*, t) does not have roots on the imaginary axis for any t # R. Since the
roots of a polynomial depend continuously on its coefficients this implies
that the roots of pD (*, t) cannot cross into right half of C. By the results
of Section 5 this implies that all K-multiples of the fixed state under con-
sideration must be stable.

In the following intervals of numbers will be denoted with overbars to
distinguish them from real numbers, and make the notation less cumber-
some. For instance *� denotes an interval and the interval [3.16524,
3.16533] is denoted 3.165.

Numerical investigations with the program XPP show that a stable
state in a chain of four oscillators coupled with d=1.5 occurs close to
x̂=(x̂1 , x̂2 , x̂3 , x̂4)=(&6.4114408, 7.3696656, 8.1984129, 7.3696656).
Notice that the orbit of (23) describing this state is not symmetric in the
sense of Proposition 3.4 although it is mapped into itself under R. This
numerically obtained solution is used as an initial guess in Mathematica's
implementation of Newton's method to determine the roots x i

a of the set of
equations

_ \x i&
;rxi

;+(x i )
2+&1.5(x(i&1) mod 4+1&2xi+x(i+1) mod 4+1) i=1, 2, 3, 4

(38)

Although Mathematica can be instructed to find roots to an arbitrary
precision, so far only floating point arithmetic was used so that none of the
results are rigorous yet.

At this point all the quantities in the computations are redefined as
intervals rather than floating point numbers and using interval arithmetic
and Theorem 6.2 we find an interval around each x i

a in which the roots of
Eq. (38) must lie. These bounds are now rigorous.

In Section 5 it was shown that a fixed state and all of its K-multiples
are stable if the polynomial pD (*, t) corresponding to that state has roots
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with negative real part for all t # [0, ?�2]. Using interval arithmetic it is
shown that

p� D (*, t)=3.61524_1012&5.02753_107 cos 4t

+(9.49583_1011&1.33199_107 cos 4t) *

+(2.67802_1011&4.94338_106 cos 4t) *2

+(4.90382_1010&771725 cos 4t) *3

+(7.551_109&144880 cos 4t) *4

+(9.81388_108&13673.3 cos 4t) *5

+(1.03403_108&1560.66 cos 4t) *6

+(9.39525_106&74.25 cos 4t) *7

+(703005&5.0625 cos 4t) *8

+42026.7 *9+2023.92 *10+66.6667 *11+*12 (39)

for the fixed state under consideration.
In the next step the roots of the polynomial p� D (*, ?�2) are found. To

employ Mathematica's implementation of Newton's method we need a
polynomial with coefficients that are floating point numbers rather than
intervals. Floating point numbers inside the intervals which determine the
coefficients of the polynomial p� D (*, ?�2) can be chosen to define a polyno-
mial pa

D (*, ?�2) which approximates pD (*, ?�2). The roots of [ra
i ]12

i=1 of
pa

D (*, ?�2) are now found using Newton's method.
The complex intervals4 containing the roots of p� D (*, ?�2) are found by

using Theorem 6.1. We set z0 equal to complex intervals around ra
i and use

complex interval arithmetic to find the radius K0 and check the conditions
of the theorem for each root ra

i . The 4 real roots and 4 complex pairs
obtained by this procedure are given in the table below.

&18.481 &0.2463\i9.769

&17.173 &0.1961\i9.317

&15.437 &0.1345\i9.164

&14.238 &0.09054\i8.622
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Since interval arithmetic was used in these calculations, these estimates
are now rigorous. The remainder of the argument shows that these roots
will not cross the imaginary axis as t varies.

By Lemma 5.1 the characteristic polynomial pD (*, t) takes the follow-
ing form when evaluated on the imaginary axis:

pD (i+, t)= :
12

j=0, j even

(: j+;j cos 4t) + j (&1) j�2

+i :
11

j=1, j odd

(: j+;j cos 4t) + j (&1) ( j&1)�2

= pR
D (+, t)+ipI

D (+, t)

Since the roots of pD (*, t) depend continuously on the parameter t, if
pD (*, t) has roots with positive real part for some t1 then there must exist
a t0 such that pD(*, t0) has a root on the imaginary axis. In other words
there must exist a +0 such that

pR
D (+0 , t0)= pI

D (+0 , t0)=0 (40)

We will use interval arithmetic to show that this cannot happen. The poly-
nomial pD (*, t) is split into a real and complex part to avoid using com-
plex interval arithmetic in the numerical calculations since complex interval
arithmetic leads to much rougher estimates than real interval arithmetic.

By Gres� gorin's theorem the eigenvalues of the matrix D(t) lie in the
union of discs Ci=[z : |z&Dii |<Ri ] where Dij are the entries in the matrix
D(t) and Ri=�12

j=1, j{i |Dij |. A direct computation shows that the inter-
section of �12

i=1 Ci with the imaginary axis is contained in the interval
[&17i, 17i] and it is therefore sufficient to show that pR

D (+, t0) and
pI

D (+, t0) are not zero simultaneously for any value of t and + # [&17, 17].
Since the coefficients of p� D (*, t) are ?�2 periodic in t, it is sufficient to

show that (40) is not satisfied for any * # [&17, 17] and t # [0, ?�2]. This
is shown by subdividing these intervals into as sufficient number of sub-
intervals +� n and t� m so that [&17, 17]/�N

i=1 +� n and [0, ?�2]/�M
m=1 t� m

with the property that the intervals p� R
D (+� n , t� m) and p� I

D (+� n , t� m) do not con-
tain zero simultaneously for any given pair of subintervals +� n and t� m .
Therefore the roots of pD (*, t) stay in the left half plane for all t # R and
all K-multiples of the fixed state under consideration are also stable.

The paths of the roots of pD (*, t) as t is varied are shown in Fig. 11.
The Mathematica code used in these calculations is available at http:��

math.bu.edu�people�josic�research�code.html.
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Fig. 11. A numerical computation of the paths that the 8 complex eigenvalues with smallest
real part tract out as t varies. Only one eigenvalue in the complex conjugate pair is shown.
Notice the small trace of the eigenvalue with the least negative real part.

APPENDIX A. PROOF OF LEMMA 5.1

Sublemma A.1. Assume A is an (n+m)_(n+m) matrix of the
form

C

B D+ 0 } } } 0

D&

A=_ 0 & (41)

b
0

where m>n, B and C are arbitrary n_n, respectively m_m matrices and
D\ are n_n matrices of the form

D\=_
d\

0
} } }
0

0
0

} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
0 & (42)

Writing the determinant of A as

det A=:
_

sgn _ `
m+n

i=1

ai, _(i) (43)
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then if a1, _(1)=a1, n+1=d+ then

`
M+n

i=2

ai, _(i){0 (44)

only if an+1, _(n+1)=an+1, 1=d& .
This lemma simply states that the only nonzero products in (43) con-

taining d+ as a factor necessarily contain d& as a factor. Notice that since
we can interchange rows and columns when calculating determinants the
opposite is also true: nonzero products containing d& as a factor necessar-
ily contain d+ as a factor.

Proof. Write the matrix A as

C

b1, 1 b1, 2 } } } b1, n d+ 0 } } }
b2, 1 b2, 2 } } } b2, n 0 0 } } }
} } } } } } } } } } } } } } } } } } } } }

A=_ d& 0 } } } 0 & (45)
0 0 } } } 0
b b b b
0 0 0 0

If an+1, _(n+1)=an+1, 1=d+ and _(i)=1 for some 2�i�n another n&1
nonzero factors in the product (44) need to be chosen from columns 2
through n. However, barring rows 1 and i which were already used, there
are only n&2 rows remaining which have nonzero entries in these
columns. This shows that factors a2, _(2) , a3, _(3) ,..., an, _(n) must come from
columns 2 through n. Since the rows 1 through n are now exhausted, the
only nonzero element remaining in column 1 is d& . This proves the lemma.

K

Sublemma A.2. The characteristic polynomial of the Km_Km
matrix

M1 E(t)+ 0 } } } 0 0 0

E(t)& M2 E(t)+ } } } 0 0 0

A=_ } } } } } } } } } } } } } } } } } } } } } &0 0 0 } } } E(t)& MK&1 E(t)+

0 0 0 } } } 0 E(t)& MK
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where Mi are arbitrary m_m matrices and E(t)\ are m_m matrices
defined as

E(t)\=_
de\it

0
} } }
0

0
0

} } }
0

} } }
} } }
} } }
} } }

0
0

} } }
0 &

does not depend on t.

Proof. Define the matrix C=A&*I. We need to show that the deter-
minant of C is independent of t. The proof is by induction on K. When
K=1 the matrix C is itself t independent so the statement is trivial. The
cofactors of the entries c1, j for 1� j�m are of the form

M

c2, 1 } } } ĉ2, j } } } c1, m 0 } } } 0
} } } } } } } } } } } } } } } } } } } } } } } }

cm, 1 } } } ĉm, j } } } cm, m 0 } } } 0_de&t 0 } } } } } } 0 & (46)
0 0 } } } } } } 0
b b b b b
0 0 0 0 0

where the hat signifies the omission of that particular column. Since the
columns and rows can be interchanged when the determinant is computed
Lemma A.1 implies that any product in (43) containing de&it as a factor
also contains c1, n+1=0 as a factor and is thus zero. Lemma A.1 also
implies that any nonzero product containing c1, n+1=deit as a factor
necessarily contains c1, n+1=de&it as a factor and so does not depend on
t either. Since this exhausts all possible cofactors of the nonzero elements
of the first row the lemma is proved. K

Lemma 5.1 can now be proved. We need to show that the determinant
of C=B&*I is of the form (35). Definition (43) will again be used for the
determinant. We now have three cases:

Case 1. Assume that for _ in the product in (43) we have 1�_(1)�m.
Since the next m&1 rows have zero entries in all but the first m columns
this particular product will be zero unless it contains cj, 1 as a factor for
some 1� j�m. This excludes the possibility that either c1, (K&1) m+1=
de&it or c(K&1) m+1, 1=deit appear as factors. If we fix _(1),..., _(m), the
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part of the sum (43) corresponding to all such permutations _ is equal
to

M2 E(t)+ 0 } } } 0 0 0

E(t)& M3 E(t)+ } } } 0 0 0

c1, _(1) } } } cm, _(m) } } } } } } } } } } } } } } } } } } } } } } }0 0 0 } } } E(t)& MK&1 E(t)+

0 0 0 } } } 0 E(t)& MK

(47)

by cofactor expansion. By Sublemma A.2 these summands will not depend
on t.

Case 2. Assume that _(1)=m+1 so that the first factor in the
product in (43) is c1, m+1=deit. Then the elements c2, _(2) ,..., cm, _(m) must
come from the matrix

C� =_
c2, 2

c3, 2

} } }
cm, 2

} } }
} } }
} } }
} } }

c2, m

c3, m

} } }
cm, m

&
by an argument identical to the one given in the second paragraph of Sub-
lemma (A.1). The only nonzero factors that can be chosen from column 1
are therefore cm+1, _(m+1)=cm+1, 1=de&it and c(K&1) m+1, _(K&1) m+1=
c(K&1) m+1, 1=deit. We therefore have the following two subcases:

Case 2a. If cm+1, 1=de&it is chosen it cancels the term c1, m+1=de it

that was chosen as the first factor in the product. In this case we are again
in the situation of Sublemma A.2 using Laplace expansion as in Case 1,
and so this product will not depend on t.

The contributions to the characteristic polynomial from Case 1 and 2a
are time independent and therefore enter the term �Km

i=(K&1) m+1 :i* i in
(35). The remainder of the lemma follows from induction.

Case 2b. If the assumptions of Case 2 hold and c(K&1) m+1, _((K&1) m+1)

=c(K&1) m+1, 1=deit then if a permutation _ leads to a nonzero product in
(43) it must satisfy _( jm+1)=( j+1) m+1 for all j<K&1. This simply
means that any nonzero product of this kind contains all the entries
cjm+1, ( j+1) m+1=deit as factors. This assertion is proved as follows:

28 Josic� and Wayne



The factor c1, m+1 is contained in the product by assumption. Assume
that _(lm+1)=(l+1) m+1 for all l< j. It will be shown that in this case
_( jm+1)=( jm+1) m+1 which will complete the induction argument.

By assumption the _(( j&1) m+1)= jm+1. The only nonzero
elements in columns jm+2,...( j+1) m come from the submatrix

_
cjm+2, jm+2

cjm+3, jm+2

} } }
c( j+1) m, jm+2

} } }
} } }
} } }
} } }

cjm+2, ( j+1) m

cjm+3, ( j+1) m

} } }
c( j+1) m, ( j+1) m

&
and since an entry from row jm+1 has already been chosen, the coeffi-
cients cjm+2, _( jm+2) ,..., c( j+1) m, _(( j+1) m) must all come from this submatrix.
The only nonzero entries remaining on row jm+1 are cjm+1, ( j&1) m+1=
de&it and cjm+1, ( j+1) m+1=deit. By the induction hypothesis we can exclude
the first possibility and we are left to conclude that cjm+1, ( j+1) m+1=deit for
any 1< j<K is a coefficient in any nonzero product in the Case 2b.

This shows that any permutation _ of the type described in Case 2b
contributes a factor #_eKitr(*) to the characteristic polynomial (35).

Case 3. The only remaining nonzero entry in row 1 of matrix C is
c1, (K&1) m+1=de&it. An argument identical to the one presented in Case 2
shows that any permutation sigma leading to a nonzero summand in
(43) must satisfy either c(K&1) m+1, _((K&1) m+1)=c(K&1) m+1, 1=deit or
c(K&1) m+1, _((K&1) m+1)=c(K&1) m+1, (K&2) m+1=de&it which again leads to
two subcases:

Case 3a. If c(K&1) m+1, _((K&1) m+1)=deit the situation is vir-
tually identical to Case 2a. Laplace expansion and Sublemma A.2 show that
the contributions to the characteristic polynomial are independent of t.

Case 3b. If c(K&1) m+1, _((K&1) m+1)=de&it the situation is similar to
Case 2b. A parallel argument shows that all the terms de&it in the matrix
must be coefficients in any nonzero product. Moreover due to the proper-
ties of the matrix, to each product #_ eKitr(*) from Case 2b corresponds a
product #_e&Kitr(*) from this case. Since these are the only time dependent
contributions to the characteristic polynomial the lemma is proved. K
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